
Martin Blažević

The Well-Gardened Code - 
Practicing the Art of Refactoring



Fahrenheit 451, Ray Bradbury

"Everyone must leave something behind when he 
dies, my grandfather said. A child or a book or a 

painting or a house or a wall built or a pair of shoes 
made. Or a garden planted. Something your hand 

touched some way so your soul has somewhere to go 
when you die, and when people look at that tree or 

that flower you planted, you’re there.”

Legacy



Wanna hear something scary?

Legacy Code



Software Entropy

Legacy Code



Legacy Code

"Walking on water and developing 
software from a specification are 

easy if both are frozen."

Edward V. Berard



The Pragmatic Programmer

“All software becomes legacy 
software as soon as it’s written.”

Legacy Code



The Broken Window



Technical Debt



Working with Feedback

• Edit and Pray 

• Cover and Modify



When we change code, we should 
have tests in place.

To put tests in place, we often have to change code.

The Legacy Code Dilemma



The Legacy Code Change Algorithm

• Identify change points.  

• Find test points. 

• Break dependencies. 

• Write tests. 

• Make changes and refactor.

assertEquals(9, calculate(2, 2)); 
assertEquals(4, calculate(2, 2)) 
assertEquals(5, calculate(2, 3))

characterization tests



Pyramid or Trophy?

Unit

Integration

End to end

Static

E2e

Integration

Unit



Unit Test

• it runs fast (< 100ms / test) 

• it doesn’t talk to the Infrastructure (e.g. a database, the 
network, the file system, or environment variables…)



Gerard Meszaros

Write Tests for People.



The Pragmatic Programmer

Test Early, Test Often, 
Test Automatically.



refactoring 
/ri:ˈfaktəɪŋ/ 

noun 
a change made to the internal structure  

of software to make it easier to understand  
and cheaper to modify without changing  

its observable behavior



refactoring 
/ri:ˈfaktəɪŋ/ 

verb 
to restructure software by applying  

a series of refactoring without  
changing its observable behavior



 改善
kai zen 
/ kai'zen/  

noun (from Japanese) 
improvement, change for the better

change good

kaj



“The Two Hats”
(by Kent Beck)

There are two kinds of changes — 
behaviour changes and structure changes. 
Always be making one kind of change or 
the other, but never both at the same time.



Why Should We Refactor?

Refactoring Improves the 
Design of Software



Why Should We Refactor?

Refactoring Makes 
Software Easier to 

Understand



Why Should We Refactor?

Refactoring Helps Us 
Find Bugs



Why Should We Refactor?

Refactoring Helps Us 
Program Faster



Don Roberts

“The first time you do something, you just do it. The 
second time you do something similar, you wince at the 

duplication, but you do the duplicate thing anyway. 
The third time you do something similar, you refactor.”

When Should We Refactor?



When Should We Refactor?

Comprehension Refactoring: 
Making Code Easier to 

Understand



 Ward Cunningham

“By refactoring I move the 
understanding from my head into the 

code itself.”



When Should We Refactor?

Preparatory Refactoring:  
Making It Easier to Add a Feature



Kent Beck

“For each desired change, make the 
change easy (warning: this may be 
hard), then make the easy change.”



The Pragmatic Programmer

Refactor Early, Refactor 
Often.



What Do I Tell My Manager? 



What Do I Tell My Manager? 



Peter Drucker

When Should We Not Refactor?

“There is nothing so useless as doing 
efficiently that which should not be 

done at all.”



When Should We Not Refactor?

Slowing Down  
New Features?



When Should We Not Refactor?

Code Ownership  
Boundaries



Rajith Attapattu

Rewrite or Refactor?

“Avoid the temptation to 
rewrite everything.”



Performance and Refactoring

The performance hot spots  
usually lie in the small  

part of the program.



Don't guess, measure!
(with the proper tool)

Performance and Refactoring



Code Smells



Code Smells



How to Refactor?



Automated Refactoring

Master your IDE



Disciplined Refactoring

Refactoring changes the programs 
in small steps, so if you make a 

mistake, it is easy to find where the 
bug is.



Disciplined Refactoring

Vs.



Disciplined Refactoring

Use micro-commits



Disciplined Refactoring

Write useful commit 
messages

Try writing down the message for your next commit



Scratch Refactoring



Catalogue of Refactoring

https://refactoring.com/catalog/ 

https://refactoring.guru/refactoring/catalog

https://refactoring.com/catalog/
https://refactoring.guru/refactoring/catalog


The most common 
refactoring operations
https://medium.com/@aserg.ufmg/what-are-the-most-

common-refactorings-performed-by-github-
developers-896b0db96d9d

https://medium.com/@aserg.ufmg/what-are-the-most-common-refactorings-performed-by-github-developers-896b0db96d9d
https://medium.com/@aserg.ufmg/what-are-the-most-common-refactorings-performed-by-github-developers-896b0db96d9d
https://medium.com/@aserg.ufmg/what-are-the-most-common-refactorings-performed-by-github-developers-896b0db96d9d


(Continuous) Renaming

It’s hard to get names right the first 
time - use the best name you can 

think of now, and don’t hesitate to 
rename it later. 



(Continuous) Renaming - The Stroop Effect

BLACK

BROWN GRAY
YELLOW

BLUE

PURPLE

ORANGE

GREEN
WHITE
RED



Extract

method 
class 

interface 
superclass



Decompose Conditional

if (date.before(SUMMER_START) || date.after(SUMMER_END)) { 
      charge = quantity * winterRate + winterServiceCharge; 
} 
else { 
      charge = quantity * summerRate; 
}

if ( ) { 

} 
else { 

}
f() { }

p() { }

g() { }

if (isSummer(date)) { 
      charge = summerCharge(quantity); 
} 
else { 
      charge = winterCharge(quantity); 
}



Dan North

Code in the Language of 
the Domain.

Decompose Conditional



Pull Up Method



Push Down Method



Less is more.
Delete and document what has been deleted, why, and 

where it can be found.

Remove Dead Code



Kevlin Henney

Comment Only What the 
Code Cannot Say.

Comments



What will be our legacy?

Thank You for Your Attention


